1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
from cmath import log
from dataclasses import dataclass
from distutils.command.upload import upload
from gc import callbacks
import flask
from flask import request, jsonify
import newmlservice
import tensorflow as tf
import pandas as pd
import json
import requests
import config
app = flask.Flask(__name__)
app.config["DEBUG"] = True
app.config["SERVER_NAME"] = config.hostIP
#@dataclass
#class Predictor:
# _id : str
# username: str
# inputs : list
# output : str
# isPublic: bool
# accessibleByLink: bool
# dateCreated: DateTime
# experimentId: str
# modelId: str
# h5FileId: str
# metrics: list
class train_callback(tf.keras.callbacks.Callback):
def __init__(self, x_test, y_test,modelId):
self.x_test = x_test
self.y_test = y_test
self.modelId=modelId
#
def on_epoch_end(self, epoch, logs=None):
#print('Evaluation: ', self.model.evaluate(self.x_test,self.y_test),"\n")
#print(epoch)
#print(logs)
#ml_socket.send(epoch)
#file = request.files.get("file")
url = config.api_url + "/Model/epoch"
r=requests.post(url, json={"Stat":str(logs),"ModelId":str(self.modelId),"EpochNum":epoch}).text
#print(r)
#print('Evaluation: ', self.model.evaluate(self.x_test,self.y_test),"\n") #broj parametara zavisi od izabranih metrika loss je default
@app.route('/train', methods = ['POST'])
def train():
print("******************************TRAIN*************************************************")
f = request.files.get("file")
data = pd.read_csv(f)
paramsModel = json.loads(request.form["model"])
paramsExperiment = json.loads(request.form["experiment"])
paramsDataset = json.loads(request.form["dataset"])
#dataset, paramsModel, paramsExperiment, callback)
filepath,result = newmlservice.train(data, paramsModel, paramsExperiment,paramsDataset, train_callback)
"""
f = request.json['filepath']
dataset = pd.read_csv(f)
filepath,result=newmlservice.train(dataset,request.json['model'],train_callback)
print(result)
"""
url = config.api_url + "/file/h5"
files = {'file': open(filepath, 'rb')}
r=requests.post(url, files=files,data={"uploaderId":paramsExperiment['uploaderId']})
fileId=r.text
m = []
for attribute, value in result.items():
m.append({"Name" : attribute, "JsonValue" : value})
predictor = {
"_id" : "",
"uploaderId" : paramsModel["uploaderId"],
"inputs" : paramsExperiment["inputColumns"],
"output" : paramsExperiment["outputColumn"],
"isPublic" : False,
"accessibleByLink" : False,
"experimentId" : paramsExperiment["_id"],
"modelId" : paramsModel["_id"],
"h5FileId" : fileId,
"metrics" : m
}
print(predictor)
url = config.api_url + "/Predictor/add"
r = requests.post(url, json=predictor).text
print(r)
return r
@app.route('/predict', methods = ['POST'])
def predict():
h5 = request.files.get("h5file")
model = tf.keras.models.load_model(h5)
paramsExperiment = json.loads(request.form["experiment"])
paramsPredictor = json.loads(request.form["predictor"])
print("********************************model loaded*******************************")
result = newmlservice.predict(paramsExperiment, paramsPredictor, model)
return result
@app.route('/preprocess',methods=['POST'])
def returnColumnsInfo():
print("********************************PREPROCESS*******************************")
dataset = json.loads(request.form["dataset"])
file = request.files.get("file")
data=pd.read_csv(file)
#dataset={}
#f = request.json['filepath']
#data=pd.read_csv(f)
preprocess = newmlservice.returnColumnsInfo(data)
#samo 10 jedinstvenih posto ih ima previse, bilo bi dobro da promenimo ovo da to budu 10 najzastupljenijih vrednosti
for col in preprocess["columnInfo"]:
col["uniqueValues"] = col["uniqueValues"][0:10]
col["uniqueValuesCount"] = col["uniqueValuesCount"][0:10]
dataset["columnInfo"] = preprocess["columnInfo"]
dataset["nullCols"] = preprocess["allNullColl"]
dataset["nullRows"] = preprocess["allNullRows"]
dataset["colCount"] = preprocess["colCount"]
dataset["rowCount"] = preprocess["rowCount"]
dataset["isPreProcess"] = True
print(dataset)
return jsonify(dataset)
print("App loaded.")
app.run()
|