aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/controller.py
blob: 7852b63d64729a9e508f2a5eb71ec2071686b9bb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from cmath import log
from dataclasses import dataclass
from distutils.command.upload import upload
from gc import callbacks
import flask
from flask import request, jsonify
import newmlservice
import tensorflow as tf
import pandas as pd
import json
import requests
import config

app = flask.Flask(__name__)
app.config["DEBUG"] = True
app.config["SERVER_NAME"] = config.hostIP

#@dataclass
#class Predictor:
#    _id : str
    # username: str
    # inputs : list
    # output : str
    # isPublic: bool
    # accessibleByLink: bool
    # dateCreated: DateTime
    # experimentId: str
    # modelId: str
    # h5FileId: str
    # metrics: list


class train_callback(tf.keras.callbacks.Callback):
    def __init__(self, x_test, y_test,modelId):
        self.x_test = x_test
        self.y_test = y_test
        self.modelId=modelId
    #
    def on_epoch_end(self, epoch, logs=None):
        #print('Evaluation: ', self.model.evaluate(self.x_test,self.y_test),"\n")
       
        #print(epoch)
        
        #print(logs)
        
        #ml_socket.send(epoch)
        #file = request.files.get("file")
        url = config.api_url + "/Model/epoch"
        r=requests.post(url, json={"Stat":str(logs),"ModelId":str(self.modelId),"EpochNum":epoch}).text
        
        #print(r)
        #print('Evaluation: ', self.model.evaluate(self.x_test,self.y_test),"\n") #broj parametara zavisi od izabranih metrika loss je default

@app.route('/train', methods = ['POST'])
def train():
    print("******************************TRAIN*************************************************")
    paramsModel = json.loads(request.form["model"])
    paramsExperiment = json.loads(request.form["experiment"])
    paramsDataset = json.loads(request.form["dataset"])
    f = request.files.get("file")
    if(paramsDataset['delimiter']=='novi red'):
        separation='\n'

    elif(paramsDataset['delimiter']=='razmak'):
        separation=' '
    else:
        separation=paramsDataset['delimiter']
    data = pd.read_csv(f,sep=separation)
    

    #dataset, paramsModel, paramsExperiment, callback)
    filepath,result,finalMetrics= newmlservice.train(data, paramsModel, paramsExperiment,paramsDataset, train_callback)
    """
    f = request.json['filepath']
    dataset = pd.read_csv(f)
    filepath,result=newmlservice.train(dataset,request.json['model'],train_callback)
    print(result)
    """


    url = config.api_url + "/file/h5"
    files = {'file': open(filepath, 'rb')}
    r=requests.post(url, files=files,data={"uploaderId":paramsExperiment['uploaderId']})
    fileId=r.text
    m = []
    for attribute, value in result.items():
        m.append({"Name" : attribute, "JsonValue" : value})
    predictor = {
        "_id" : "",
        "uploaderId" : paramsModel["uploaderId"],
        "inputs" : paramsExperiment["inputColumns"],
        "output" : paramsExperiment["outputColumn"],
        "isPublic" : False,
        "accessibleByLink" : False,
        "experimentId" : paramsExperiment["_id"],
        "modelId" : paramsModel["_id"],
        "h5FileId" : fileId,
        "metrics" : m,
        "finalMetrics":finalMetrics
        
    }
    #print(predictor)
    url = config.api_url + "/Predictor/add"
    r = requests.post(url, json=predictor).text
    print(r)
    return r

@app.route('/predict', methods = ['POST'])
def predict():
    h5 = request.files.get("h5file")
    model = tf.keras.models.load_model(h5)
    paramsExperiment = json.loads(request.form["experiment"])
    paramsPredictor = json.loads(request.form["predictor"])
    print("********************************model loaded*******************************")
    result = newmlservice.predict(paramsExperiment, paramsPredictor, model,train_callback)
    return result

@app.route('/manageH5', methods = ['POST'])
def manageH5():
    h5 = request.files.get("h5file")
    model = tf.keras.models.load_model(h5)

    paramsExperiment = json.loads(request.form["experiment"])
    paramsModel = json.loads(request.form["model"])
    paramsDataset = json.loads(request.form["dataset"])
    
    f = request.files.get("file")
    if(paramsDataset['delimiter']=='novi red'):
        separation='\n'
    elif(paramsDataset['delimiter']=='razmak'):
        separation=' '
    else:
        separation=paramsDataset['delimiter']
    
    data = pd.read_csv(f,sep=separation)
    
    result = newmlservice.manageH5(data,paramsModel,paramsExperiment,paramsDataset,model,train_callback)
    return result


@app.route('/preprocess',methods=['POST'])
def returnColumnsInfo():
    print("********************************PREPROCESS*******************************")
   
    dataset = json.loads(request.form["dataset"])
    file = request.files.get("file")
    if(dataset['delimiter']=='novi red'):
        separation='\n'

    elif(dataset['delimiter']=='razmak'):
        separation=' '
    else:
        separation=dataset['delimiter']
    data=pd.read_csv(file,sep=separation)
    '''
    #f = request.json['filepath']
    #data=pd.read_csv(f)
    dataset={}
    '''
    preprocess = newmlservice.returnColumnsInfo(data)
    #samo 10 jedinstvenih posto ih ima previse, bilo bi dobro da promenimo ovo da to budu 10 najzastupljenijih vrednosti
    for col in preprocess["columnInfo"]:
        col["uniqueValues"] = col["uniqueValues"][0:6]
        col["uniqueValuesCount"] = col["uniqueValuesCount"][0:6]
        col['uniqueValuesPercent']=col['uniqueValuesPercent'][0:6]
    dataset["columnInfo"] = preprocess["columnInfo"]
    dataset["nullCols"] = preprocess["allNullColl"]
    dataset["nullRows"] = preprocess["allNullRows"]
    dataset["colCount"] = preprocess["colCount"]
    dataset["rowCount"] = preprocess["rowCount"]
    dataset["cMatrix"]=preprocess['cMatrix']
    dataset["isPreProcess"] = True

    return jsonify(dataset)
    
print("App loaded.")
app.run()