aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api/newmlservice.py
blob: 560e575fb4b667618d26408820fa0629e9d940b1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
from enum import unique
from itertools import count
import os
from sys import breakpointhook
import pandas as pd
from sklearn import datasets, multiclass
import tensorflow as tf
import keras
import numpy as np
import csv
import json
import h5py
import sklearn.metrics as sm
from statistics import mode
from typing_extensions import Self
from copyreg import constructor
from flask import request, jsonify, render_template
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from sklearn.preprocessing import OrdinalEncoder
import category_encoders as ce
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from dataclasses import dataclass
import statistics as s
from sklearn.metrics import roc_auc_score
import matplotlib.pyplot as plt
from ann_visualizer.visualize import ann_viz;
def returnColumnsInfo(dataset):
    dict=[]
    
    datafront=dataset.copy()
    dataMatrix=dataset.copy()
    
   
    svekolone=datafront.columns
    kategorijskekolone=datafront.select_dtypes(include=['object']).columns

    allNullCols=0
    rowCount=datafront.shape[0]#ukupan broj redova
    colCount=len(datafront.columns)#ukupan broj kolona

    for kolona in svekolone:
        if(kolona in kategorijskekolone):
            encoder=LabelEncoder()
            dataMatrix[kolona]=encoder.fit_transform(dataMatrix[kolona])

    #print(dataMatrix.dtypes)
    cMatrix=dataMatrix.corr()

    for kolona in svekolone:
        if(kolona in kategorijskekolone):
            unique=datafront[kolona].value_counts()
            uniquevalues=[]
            uniquevaluescount=[]
            uniquevaluespercent=[]
            for val, count in unique.iteritems():
                if(val):
                    uniquevalues.append(val)
                    uniquevaluescount.append(count)
                    percent=count/rowCount
                    uniquevaluespercent.append(percent)
            #print(uniquevalues)
            #print(uniquevaluescount)
            mean=0
            median=0
            minimum=0
            maximum=0
            q1=0
            q3=0
            nullCount=datafront[kolona].isnull().sum()
            if(nullCount>0):
                allNullCols=allNullCols+1
            frontreturn={
                        'columnName':kolona,
                        'isNumber':False,
                        'uniqueValues':uniquevalues,
                        'uniqueValuesCount':uniquevaluescount,
                        'uniqueValuesPercent':uniquevaluespercent,
                        'mean':float(mean),
                        'median':float(median),
                        'numNulls':int(nullCount),
                        'min':float(minimum),
                        'max':float(maximum),
                        'q1':float(q1),
                        'q3':float(q3),

            }
            dict.append(frontreturn)
        else:
            minimum=min(datafront[kolona])
            maximum=max(datafront[kolona])
            mean=datafront[kolona].mean()
            median=s.median(datafront[kolona].copy().dropna())
            q1= np.percentile(datafront[kolona].copy().dropna(), 25)
            q3= np.percentile(datafront[kolona].copy().dropna(), 75)
            nullCount=datafront[kolona].isnull().sum()
            if(nullCount>0):
                allNullCols=allNullCols+1

            #pretvaranje u kategorijsku
            datafront = datafront.astype({kolona: str})
            #print(datafront.dtypes)
            unique=datafront[kolona].value_counts()
            uniquevaluesn=[]
            uniquevaluescountn=[]
            uniquevaluespercentn=[]
            for val, count in unique.iteritems():
                if(val):
                    uniquevaluesn.append(val)
                    uniquevaluescountn.append(count)
                    percent=count/rowCount
                    uniquevaluespercentn.append(percent)
            frontreturn={
                        'columnName':kolona,
                        'isNumber':1,
                        'uniqueValues':uniquevaluesn,
                        'uniqueValuesCount':uniquevaluescountn,
                        'uniqueValuesPercent':uniquevaluespercentn,
                        'mean':float(mean),
                        'median':float(median),
                        'numNulls':int(nullCount),
                        'min':float(minimum),
                        'max':float(maximum),
                        'q1':float(q1),
                        'q3':float(q3),

            }
            dict.append(frontreturn)
        NullRows = datafront[datafront.isnull().any(axis=1)]
        #print(NullRows)
        #print(len(NullRows))
        allNullRows=len(NullRows)
        #print(cMatrix.to_json(orient='index'))
        #json.loads()['data']
    return {'columnInfo':dict,'allNullColl':int(allNullCols),'allNullRows':int(allNullRows),'rowCount':int(rowCount),'colCount':int(colCount),'cMatrix':json.loads(cMatrix.to_json(orient='split'))['data']}

@dataclass
class TrainingResultClassification:
    accuracy: float
    precision: float
    recall: float
    tn: float
    fp: float
    fn: float
    tp: float
    specificity: float
    f1: float
    logloss: float
    fpr: float
    tpr: float
    metrics: dict
'''
@datasets
class TrainingResultRegression:
    mse: float
    mae: float
    mape: float
    rmse: float

@dataclass
class TrainingResult:
    metrics: dict
'''

def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
    ###UCITAVANJE SETA
    problem_type = paramsModel["type"]
    #print(problem_type)
    data = pd.DataFrame()
    #print(data)
    for col in paramsExperiment["inputColumns"]:
        #print(col)
        if(col!=paramsExperiment["outputColumn"]):
            data[col]=dataset[col]
    output_column = paramsExperiment["outputColumn"]
    data[output_column] = dataset[output_column]
    #print(data)

    ###KATEGORIJSKE KOLONE
    kategorijskekolone=[]
    ###PRETVARANJE NUMERICKIH U KATREGORIJSKE AKO JE KORISNIK TAKO OZNACIO
    columnInfo=paramsDataset['columnInfo']
    columnTypes=paramsExperiment['columnTypes']
    for i in range(len(columnInfo)):
        col=columnInfo[i]
        if(columnTypes[i]=="categorical" and col['columnName'] in paramsExperiment['inputColumns']):
            data[col['columnName']]=data[col['columnName']].apply(str)
            kategorijskekolone.append(col['columnName'])
    #kategorijskekolone=data.select_dtypes(include=['object']).columns
    print(kategorijskekolone)
    ###NULL
    null_value_options = paramsExperiment["nullValues"]
    null_values_replacers = paramsExperiment["nullValuesReplacers"]
    
    if(null_value_options=='replace'):
        #print("replace null") 
        dict=null_values_replacers
        while(len(dict)>0):
            replace=dict.pop()
            col=replace['column']
            opt=replace['option']
            if(opt=='replace'):
                replacevalue=replace['value']
                data[col]=data[col].fillna(replacevalue)
    elif(null_value_options=='delete_rows'):
        data=data.dropna()
    elif(null_value_options=='delete_columns'):
        data=data.dropna(axis=1)
    #print(data.shape)
    
    #
    # Brisanje kolona koje ne uticu na rezultat
    #
    '''
    num_rows=data.shape[0]
    for col in data.columns:
        if((data[col].nunique()==(num_rows)) and (data[col].dtype==np.object_)):
            data.pop(col)
    #
    '''
    ### Enkodiranje
    encodings=paramsExperiment["encodings"]
    #datafront=dataset.copy()
    #svekolone=datafront.columns
    #kategorijskekolone=datafront.select_dtypes(include=['object']).columns
    for kolonaEncoding in encodings:
        
        kolona = kolonaEncoding["columnName"]
        encoding = kolonaEncoding["encoding"]
    
        if(kolona in kategorijskekolone):
            if(encoding=='label'):
                encoder=LabelEncoder()
                for col in data.columns:
                    if(data[col].dtype==np.object_):
                        data[col]=encoder.fit_transform(data[col])
    
    
            elif(encoding=='onehot'):
                category_columns=[]
                for col in data.columns:
                    if(data[col].dtype==np.object_):
                        category_columns.append(col)
                data=pd.get_dummies(data, columns=category_columns, prefix=category_columns)

            elif(encoding=='ordinal'):
                encoder = OrdinalEncoder()
                for col in data.columns:
                    if(data[col].dtype==np.object_):
                        data[col]=encoder.fit_transform(data[col])
        
            elif(encoding=='hashing'):
                category_columns=[]
                for col in data.columns:
                    if(data[col].dtype==np.object_):
                        category_columns.append(col)
                encoder=ce.HashingEncoder(cols=category_columns, n_components=len(category_columns))
                encoder.fit_transform(data)
            elif(encoding=='binary'):
                category_columns=[]
                for col in data.columns:
                    if(data[col].dtype==np.object_):
                        category_columns.append(col)
                encoder=ce.BinaryEncoder(cols=category_columns, return_df=True)
                encoder.fit_transform(data)
            
            elif(encoding=='baseN'):
                category_columns=[]
                for col in data.columns:
                    if(data[col].dtype==np.object_):
                        category_columns.append(col)
                encoder=ce.BaseNEncoder(cols=category_columns, return_df=True, base=5)
                encoder.fit_transform(data)
    #
    # Input - output
    #
    x_columns = []
    for col in data.columns:
        if(col!=output_column):
            x_columns.append(col)
    #print(x_columns)
    x = data[x_columns].values
    y = data[output_column].values

    #
    # Podela na test i trening skupove
    #
    test=paramsModel["randomTestSetDistribution"]
    randomOrder = paramsModel["randomOrder"]
    if(randomOrder):
        random=123
    else:
        random=0
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=test, random_state=random)
    #print(x_train,x_test)

    #
    # Treniranje modela
    #
    #
    ###OPTIMIZATORI
   
    if(paramsModel['optimizer']=='Adam'):
        opt=tf.keras.optimizers.Adam(learning_rate=3)

    elif(paramsModel['optimizer']=='Adadelta'):
        opt=tf.keras.optimizers.Adadelta(learning_rate=float(paramsModel['learningRate']))

    elif(paramsModel['optimizer']=='Adagrad'): 
        opt=tf.keras.optimizers.Adagrad(learning_rate=float(paramsModel['learningRate']))

    elif(paramsModel['optimizer']=='Adamax'):
        opt=tf.keras.optimizers.Adamax(learning_rate=float(paramsModel['learningRate']))

    elif(paramsModel['optimizer']=='Nadam'):
        opt=tf.keras.optimizers.Nadam(learning_rate=float(paramsModel['learningRate']))

    elif(paramsModel['optimizer']=='Sgd'):
        opt=tf.keras.optimizers.SGD(learning_rate=float(paramsModel['learningRate']))

    elif(paramsModel['optimizer']=='Ftrl'):
        opt=tf.keras.optimizers.Ftrl(learning_rate=float(paramsModel['learningRate']))
    
    elif(paramsModel['optimizer']=='Rmsprop'):
        opt=tf.keras.optimizers.RMSprop(learning_rate=float(paramsModel['learningRate']))

    ###REGULARIZACIJA
    #regularisation={'kernelType':'l1 ili l2 ili l1_l2','kernelRate':default=0.01 ili jedna od vrednosti(0.0001,0.001,0.1,1,2,3) ili neka koju je korisnik zadao,'biasType':'','biasRate':'','activityType','activityRate'}
   

    filepath=os.path.join("temp/",paramsExperiment['_id']+"_"+paramsModel['_id']+".h5")
    if(problem_type=='multi-klasifikacioni'):
        #print('multi')
        print(paramsModel)
        reg=paramsModel['layers'][0]['regularisation']
        regRate=float(paramsModel['layers'][0]['regularisationRate'])
        if(reg=='l1'):
            kernelreg=tf.keras.regularizers.l1(regRate)
            biasreg=tf.keras.regularizers.l1(regRate)
            activityreg=tf.keras.regularizers.l1(regRate)
        elif(reg=='l2'):
            kernelreg=tf.keras.regularizers.l2(regRate)
            biasreg=tf.keras.regularizers.l2(regRate)
            activityreg=tf.keras.regularizers.l2(regRate)

        classifier=tf.keras.Sequential()
        classifier.add(tf.keras.layers.Dense(units=paramsModel['layers'][0]['neurons'], activation=paramsModel['layers'][0]['activationFunction'],input_dim=x_train.shape[1], kernel_regularizer=kernelreg, bias_regularizer=biasreg, activity_regularizer=activityreg))#prvi skriveni + definisanje prethodnog-ulaznog
       
        for i in range(paramsModel['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja
            ###Kernel
            reg=paramsModel['layers'][i+1]['regularisation']
            regRate=float(paramsModel['layers'][i+1]['regularisationRate'])
            if(reg=='l1'):
                kernelreg=tf.keras.regularizers.l1(regRate)
                biasreg=tf.keras.regularizers.l1(regRate)
                activityreg=tf.keras.regularizers.l1(regRate)
            elif(reg=='l2'):
                kernelreg=tf.keras.regularizers.l2(regRate)
                biasreg=tf.keras.regularizers.l2(regRate)
                activityreg=tf.keras.regularizers.l2(regRate)

            classifier.add(tf.keras.layers.Dense(units=paramsModel['layers'][i+1]['neurons'], activation=paramsModel['layers'][i+1]['activationFunction'],kernel_regularizer=kernelreg, bias_regularizer=biasreg, activity_regularizer=activityreg))#i-ti skriveni sloj
        
        classifier.add(tf.keras.layers.Dense(units=5, activation=paramsModel['outputLayerActivationFunction']))#izlazni sloj

        

        classifier.compile(loss =paramsModel["lossFunction"] , optimizer =opt, metrics = ['accuracy','mae','mse'])

        history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))

        hist=history.history
        #plt.plot(hist['accuracy'])
        #plt.show()
        y_pred=classifier.predict(x_test)
        y_pred=np.argmax(y_pred,axis=1)
        
        scores = classifier.evaluate(x_test, y_test)
        #print("\n%s: %.2f%%" % (classifier.metrics_names[1], scores[1]*100))
        
        
        classifier.save(filepath, save_format='h5')
        
        #vizuelizacija u python-u
        #from ann_visualizer.visualize import ann_viz;
        #ann_viz(classifier, title="My neural network")
        
        return filepath,hist

    elif(problem_type=='binarni-klasifikacioni'):
        #print('*************************************************************************binarni')
        reg=paramsModel['layers'][0]['regularisation']
        regRate=float(paramsModel['layers'][0]['regularisationRate'])
        if(reg=='l1'):
            kernelreg=tf.keras.regularizers.l1(regRate)
            biasreg=tf.keras.regularizers.l1(regRate)
            activityreg=tf.keras.regularizers.l1(regRate)
        elif(reg=='l2'):
            kernelreg=tf.keras.regularizers.l2(regRate)
            biasreg=tf.keras.regularizers.l2(regRate)
            activityreg=tf.keras.regularizers.l2(regRate)
        classifier=tf.keras.Sequential()
    
        classifier.add(tf.keras.layers.Dense(units=paramsModel['layers'][0]['neurons'], activation=paramsModel['layers'][0]['activationFunction'],input_dim=x_train.shape[1],kernel_regularizer=kernelreg, bias_regularizer=biasreg, activity_regularizer=activityreg))#prvi skriveni + definisanje prethodnog-ulaznog
        
        for i in range(paramsModel['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja
            #print(i)
            reg=paramsModel['layers'][i+1]['regularisation']
            regRate=float(paramsModel['layers'][0]['regularisationRate'])
            if(reg=='l1'):
                kernelreg=tf.keras.regularizers.l1(regRate)
                biasreg=tf.keras.regularizers.l1(regRate)
                activityreg=tf.keras.regularizers.l1(regRate)
            elif(reg=='l2'):
                kernelreg=tf.keras.regularizers.l2(regRate)
                biasreg=tf.keras.regularizers.l2(regRate)
                activityreg=tf.keras.regularizers.l2(regRate)
            classifier.add(tf.keras.layers.Dense(units=paramsModel['layers'][i+1]['neurons'], activation=paramsModel['layers'][i+1]['activationFunction']))#i-ti skriveni sloj
        
        classifier.add(tf.keras.layers.Dense(units=1, activation=paramsModel['outputLayerActivationFunction']))#izlazni sloj

        classifier.compile(loss =paramsModel["lossFunction"] , optimizer =opt , metrics = ['accuracy','mae','mse'])

        history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
        hist=history.history
        y_pred=classifier.predict(x_test)
        y_pred=(y_pred>=0.5).astype('int')

        #print(y_pred.flatten())
        #print(y_test)
        
        scores = classifier.evaluate(x_test, y_test)
        #print("\n%s: %.2f%%" % (classifier.metrics_names[1], scores[1]*100))
        #
        # 
        # 
        # 
        # 
        # 
        # 
        # 
        # 
        # 
        # 
        # 
        # 
        # 
        # 
        # ann_viz(classifier, title="My neural network")
        
        classifier.save(filepath, save_format='h5')
        return filepath,hist

    elif(problem_type=='regresioni'):
        reg=paramsModel['layers'][0]['regularisation']
        regRate=float(paramsModel['layers'][0]['regularisationRate'])
        if(reg=='l1'):
            kernelreg=tf.keras.regularizers.l1(regRate)
            biasreg=tf.keras.regularizers.l1(regRate)
            activityreg=tf.keras.regularizers.l1(regRate)
        elif(reg=='l2'):
            kernelreg=tf.keras.regularizers.l2(regRate)
            biasreg=tf.keras.regularizers.l2(regRate)
            activityreg=tf.keras.regularizers.l2(regRate)
        classifier=tf.keras.Sequential()
    
        classifier.add(tf.keras.layers.Dense(units=paramsModel['layers'][0]['neurons'], activation=paramsModel['layers'][0]['activationFunction'],input_dim=x_train.shape[1],kernel_regularizer=kernelreg, bias_regularizer=biasreg, activity_regularizer=activityreg))#prvi skriveni + definisanje prethodnog-ulaznog
        
        for i in range(paramsModel['hiddenLayers']-1):#ako postoji vise od jednog skrivenog sloja
            #print(i)
            reg=paramsModel['layers'][i+1]['regularisation']
            regRate=float(paramsModel['layers'][i+1]['regularisationRate'])
            if(reg=='l1'):
                kernelreg=tf.keras.regularizers.l1(regRate)
                biasreg=tf.keras.regularizers.l1(regRate)
                activityreg=tf.keras.regularizers.l1(regRate)
            elif(reg=='l2'):
                kernelreg=tf.keras.regularizers.l2(regRate)
                biasreg=tf.keras.regularizers.l2(regRate)
                activityreg=tf.keras.regularizers.l2(regRate)

            classifier.add(tf.keras.layers.Dense(units=paramsModel['layers'][i+1]['neurons'], activation=paramsModel['layers'][i+1]['activationFunction'],kernel_regularizer=kernelreg, bias_regularizer=biasreg, activity_regularizer=activityreg))#i-ti skriveni sloj
        
        classifier.add(tf.keras.layers.Dense(units=1,activation=paramsModel['outputLayerActivationFunction']))

        classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics = ['accuracy','mae','mse'])

        history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
        hist=history.history
        y_pred=classifier.predict(x_test)
        #print(classifier.evaluate(x_test, y_test))
        classifier.save(filepath, save_format='h5')
        return filepath,hist
    def roc_auc_score_multiclass(actual_class, pred_class, average = "macro"):
    
        #creating a set of all the unique classes using the actual class list
        unique_class = set(actual_class)
        roc_auc_dict = {}
        for per_class in unique_class:
            
            #creating a list of all the classes except the current class 
            other_class = [x for x in unique_class if x != per_class]

            #marking the current class as 1 and all other classes as 0
            new_actual_class = [0 if x in other_class else 1 for x in actual_class]
            new_pred_class = [0 if x in other_class else 1 for x in pred_class]

            #using the sklearn metrics method to calculate the roc_auc_score
            roc_auc = roc_auc_score(new_actual_class, new_pred_class, average = average)
            roc_auc_dict[per_class] = roc_auc

        return roc_auc_dict
    #
    # Metrike
    #
    
    if(problem_type=="binarni-klasifikacioni"):
        accuracy = float(sm.accuracy_score(y_test,y_pred))
        precision = float(sm.precision_score(y_test,y_pred))
        recall = float(sm.recall_score(y_test,y_pred))
        tn, fp, fn, tp = sm.confusion_matrix(y_test,y_pred).ravel()
        specificity = float(tn / (tn+fp))
        f1 = float(sm.f1_score(y_test,y_pred))
        fpr, tpr, _ = sm.roc_curve(y_test,y_pred)
        logloss = float(sm.log_loss(y_test, y_pred))
        metrics= {"accuracy" : accuracy,
            "precision" : precision,
            "recall" : recall,
            "specificity" : specificity,
            "f1" : f1,
            "tn" : float(tn),
            "fp" : float(fp),
            "fn" : float(fn),
            "tp" : float(tp),
            "fpr" : fpr.tolist(),
            "tpr" : tpr.tolist(),
            "logloss" : logloss
            }
    elif(problem_type=="regresioni"):
        # https://www.analyticsvidhya.com/blog/2021/05/know-the-best-evaluation-metrics-for-your-regression-model/
        mse = float(sm.mean_squared_error(y_test,y_pred))
        mae = float(sm.mean_absolute_error(y_test,y_pred))
        mape = float(sm.mean_absolute_percentage_error(y_test,y_pred))
        rmse = float(np.sqrt(sm.mean_squared_error(y_test,y_pred)))
        rmsle = float(np.sqrt(sm.mean_squared_error(y_test, y_pred)))
        r2 = float(sm.r2_score(y_test, y_pred))
        # n - num of observations
        # k - num of independent variables
        n = 40
        k = 2
        adj_r2 = float(1 - ((1-r2)*(n-1)/(n-k-1)))
        metrics= {"mse" : mse,
            "mae" : mae,
            "mape" : mape,
            "rmse" : rmse,
            "rmsle" : rmsle,
            "r2" : r2,
            "adj_r2" : adj_r2
            }
    '''
    elif(problem_type=="multi-klasifikacioni"):
        
        cr=sm.classification_report(y_test, y_pred)
        cm=sm.confusion_matrix(y_test,y_pred)
        # https://www.kaggle.com/code/nkitgupta/evaluation-metrics-for-multi-class-classification/notebook
        accuracy=metrics.accuracy_score(y_test, y_pred)
        macro_averaged_precision=metrics.precision_score(y_test, y_pred, average = 'macro')
        micro_averaged_precision=metrics.precision_score(y_test, y_pred, average = 'micro')
        macro_averaged_recall=metrics.recall_score(y_test, y_pred, average = 'macro')
        micro_averaged_recall=metrics.recall_score(y_test, y_pred, average = 'micro')
        macro_averaged_f1=metrics.f1_score(y_test, y_pred, average = 'macro')
        micro_averaged_f1=metrics.f1_score(y_test, y_pred, average = 'micro')
        roc_auc_dict=roc_auc_score_multiclass(y_test, y_pred)
'''   
def predict(experiment, predictor, model):
    #model.predict()
    # ovo je pre bilo manageH5 
    return "TODO"


def manageH5(dataset,paramsModel,paramsExperiment,paramsDataset,h5model,callback):
    problem_type = paramsModel["type"]
    data = pd.DataFrame()
    for col in paramsExperiment["inputColumns"]:
        if(col!=paramsExperiment["outputColumn"]):
            data[col]=dataset[col]
    output_column = paramsExperiment["outputColumn"]
    data[output_column] = dataset[output_column]

    kategorijskekolone=[]
    columnInfo=paramsDataset['columnInfo']
    columnTypes=paramsExperiment['columnTypes']
    for i in range(len(columnInfo)):
        col=columnInfo[i]
        if(columnTypes[i]=="categorical" and col['columnName'] in paramsExperiment['inputColumns']):
            data[col['columnName']]=data[col['columnName']].apply(str)
            kategorijskekolone.append(col['columnName'])

    null_value_options = paramsExperiment["nullValues"]
    null_values_replacers = paramsExperiment["nullValuesReplacers"]
    
    if(null_value_options=='replace'):
        dict=null_values_replacers
        while(len(dict)>0):
            replace=dict.pop()
            col=replace['column']
            opt=replace['option']
            if(opt=='replace'):
                replacevalue=replace['value']
                data[col]=data[col].fillna(replacevalue)
    elif(null_value_options=='delete_rows'):
        data=data.dropna()
    elif(null_value_options=='delete_columns'):
        data=data.dropna(axis=1)

    encodings=paramsExperiment["encodings"]
    for kolonaEncoding in encodings:
        kolona = kolonaEncoding["columnName"]
        encoding = kolonaEncoding["encoding"]
        if(kolona in kategorijskekolone):
            if(encoding=='label'):
                encoder=LabelEncoder()
                for col in data.columns:
                    if(data[col].dtype==np.object_):
                        data[col]=encoder.fit_transform(data[col])
            elif(encoding=='onehot'):
                category_columns=[]
                for col in data.columns:
                    if(data[col].dtype==np.object_):
                        category_columns.append(col)
                data=pd.get_dummies(data, columns=category_columns, prefix=category_columns)

    x_columns = []
    for col in data.columns:
        if(col!=output_column):
            x_columns.append(col)
    x2 = data[x_columns]
    x2 = data[x_columns].values
    y2 = data[output_column].values
    #h5model.summary()
    #ann_viz(h5model, title="My neural network")


    history=h5model.fit(x2, y2, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x2, y2,paramsModel['_id']))  
    y_pred2=h5model.predict(x2)
    y_pred2=np.argmax(y_pred2,axis=1)
    #y_pred=h5model.predict_classes(x)
    score = h5model.evaluate(x2,y_pred2, verbose=0)
    #print("%s: %.2f%%" % (h5model.metrics_names[1], score[1]*100))
    #print(y_pred2)
    #print( 'done')