aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/obradaitreningcsv.ipynb
blob: 97f27dac98c5cb61c0f5b9aa72b9775af0a7ab69 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from matplotlib.pyplot import axis\n",
    "import pandas as pd\n",
    "import tensorflow as tf\n",
    "import numpy as np\n",
    "import seaborn as sb\n",
    "import keras as k\n",
    "from sklearn.model_selection import train_test_split \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "data=pd.read_csv('winequality.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "fixed acidity           False\n",
      "volatile acidity        False\n",
      "citric acid             False\n",
      "residual sugar          False\n",
      "chlorides               False\n",
      "free sulfur dioxide     False\n",
      "total sulfur dioxide    False\n",
      "density                 False\n",
      "pH                      False\n",
      "sulphates               False\n",
      "alcohol                 False\n",
      "quality                 False\n",
      "dtype: bool\n"
     ]
    }
   ],
   "source": [
    "print(data.isnull().any())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 1599 entries, 0 to 1598\n",
      "Data columns (total 12 columns):\n",
      " #   Column                Non-Null Count  Dtype  \n",
      "---  ------                --------------  -----  \n",
      " 0   fixed acidity         1599 non-null   float64\n",
      " 1   volatile acidity      1599 non-null   float64\n",
      " 2   citric acid           1599 non-null   float64\n",
      " 3   residual sugar        1599 non-null   float64\n",
      " 4   chlorides             1599 non-null   float64\n",
      " 5   free sulfur dioxide   1599 non-null   float64\n",
      " 6   total sulfur dioxide  1599 non-null   float64\n",
      " 7   density               1599 non-null   float64\n",
      " 8   pH                    1599 non-null   float64\n",
      " 9   sulphates             1599 non-null   float64\n",
      " 10  alcohol               1599 non-null   float64\n",
      " 11  quality               1599 non-null   int64  \n",
      "dtypes: float64(11), int64(1)\n",
      "memory usage: 150.0 KB\n",
      "None\n"
     ]
    }
   ],
   "source": [
    "print(data.info())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0    5\n",
      "1    5\n",
      "2    5\n",
      "3    6\n",
      "4    5\n",
      "5    5\n",
      "6    5\n",
      "7    7\n",
      "8    7\n",
      "9    5\n",
      "Name: quality, dtype: int64\n",
      "   fixed acidity  volatile acidity  citric acid  residual sugar  chlorides  \\\n",
      "0            7.4              0.70         0.00             1.9      0.076   \n",
      "1            7.8              0.88         0.00             2.6      0.098   \n",
      "2            7.8              0.76         0.04             2.3      0.092   \n",
      "3           11.2              0.28         0.56             1.9      0.075   \n",
      "4            7.4              0.70         0.00             1.9      0.076   \n",
      "5            7.4              0.66         0.00             1.8      0.075   \n",
      "6            7.9              0.60         0.06             1.6      0.069   \n",
      "7            7.3              0.65         0.00             1.2      0.065   \n",
      "8            7.8              0.58         0.02             2.0      0.073   \n",
      "9            7.5              0.50         0.36             6.1      0.071   \n",
      "\n",
      "   free sulfur dioxide  total sulfur dioxide  density    pH  sulphates  \\\n",
      "0                 11.0                  34.0   0.9978  3.51       0.56   \n",
      "1                 25.0                  67.0   0.9968  3.20       0.68   \n",
      "2                 15.0                  54.0   0.9970  3.26       0.65   \n",
      "3                 17.0                  60.0   0.9980  3.16       0.58   \n",
      "4                 11.0                  34.0   0.9978  3.51       0.56   \n",
      "5                 13.0                  40.0   0.9978  3.51       0.56   \n",
      "6                 15.0                  59.0   0.9964  3.30       0.46   \n",
      "7                 15.0                  21.0   0.9946  3.39       0.47   \n",
      "8                  9.0                  18.0   0.9968  3.36       0.57   \n",
      "9                 17.0                 102.0   0.9978  3.35       0.80   \n",
      "\n",
      "   alcohol  \n",
      "0      9.4  \n",
      "1      9.8  \n",
      "2      9.8  \n",
      "3      9.8  \n",
      "4      9.4  \n",
      "5      9.4  \n",
      "6      9.4  \n",
      "7     10.0  \n",
      "8      9.5  \n",
      "9     10.5  \n"
     ]
    }
   ],
   "source": [
    "y=data.pop('quality')\n",
    "x=data\n",
    "\n",
    "x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.7,random_state=50)\n",
    "\n",
    "print(y.head(10))\n",
    "print(x.head(10))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "normalizer=tf.keras.layers.Normalization(axis=-1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "normalizer.adapt(np.array(x_train))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "alcohol=np.array(x_train['alcohol'])\n",
    "alcohol_normalizer=tf.keras.layers.Normalization(input_shape=[1,],axis=None)\n",
    "alcohol_normalizer=alcohol_normalizer.adapt(alcohol)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [],
   "source": [
    "alcohol_model = tf.keras.models.Sequential()\n",
    "alcohol_model.add(tf.keras.layers.Dense(input_dim=11, units=100, activation='relu'))\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
   "outputs": [],
   "source": [
    "alcohol_model.compile(\n",
    "    optimizer=tf.optimizers.Adam(learning_rate=0.1),\n",
    "    loss='mean_absolute_error'\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/100\n",
      "28/28 [==============================] - 0s 5ms/step - loss: 3.2390 - val_loss: 2.5426\n",
      "Epoch 2/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.4418 - val_loss: 2.3977\n",
      "Epoch 3/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3838 - val_loss: 2.3266\n",
      "Epoch 4/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3546 - val_loss: 2.3361\n",
      "Epoch 5/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3218 - val_loss: 2.2931\n",
      "Epoch 6/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3508 - val_loss: 2.2979\n",
      "Epoch 7/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3198 - val_loss: 2.3019\n",
      "Epoch 8/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3683 - val_loss: 2.3992\n",
      "Epoch 9/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3907 - val_loss: 2.4212\n",
      "Epoch 10/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3593 - val_loss: 2.3958\n",
      "Epoch 11/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3772 - val_loss: 2.3542\n",
      "Epoch 12/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3353 - val_loss: 2.3437\n",
      "Epoch 13/100\n",
      "28/28 [==============================] - 0s 4ms/step - loss: 2.3947 - val_loss: 2.3969\n",
      "Epoch 14/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3660 - val_loss: 2.3823\n",
      "Epoch 15/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3374 - val_loss: 2.3699\n",
      "Epoch 16/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3862 - val_loss: 2.3677\n",
      "Epoch 17/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3393 - val_loss: 2.2889\n",
      "Epoch 18/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3500 - val_loss: 2.4911\n",
      "Epoch 19/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3905 - val_loss: 2.3490\n",
      "Epoch 20/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3631 - val_loss: 2.3380\n",
      "Epoch 21/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3155 - val_loss: 2.5694\n",
      "Epoch 22/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.4091 - val_loss: 2.2998\n",
      "Epoch 23/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3569 - val_loss: 2.3790\n",
      "Epoch 24/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3409 - val_loss: 2.3120\n",
      "Epoch 25/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3285 - val_loss: 2.3552\n",
      "Epoch 26/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3403 - val_loss: 2.3427\n",
      "Epoch 27/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3078 - val_loss: 2.3340\n",
      "Epoch 28/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3293 - val_loss: 2.4440\n",
      "Epoch 29/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3468 - val_loss: 2.2857\n",
      "Epoch 30/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3323 - val_loss: 2.3261\n",
      "Epoch 31/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3532 - val_loss: 2.3838\n",
      "Epoch 32/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3031 - val_loss: 2.3436\n",
      "Epoch 33/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3755 - val_loss: 2.3305\n",
      "Epoch 34/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.4398 - val_loss: 2.3591\n",
      "Epoch 35/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3882 - val_loss: 2.3554\n",
      "Epoch 36/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3765 - val_loss: 2.5028\n",
      "Epoch 37/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3764 - val_loss: 2.2674\n",
      "Epoch 38/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.4234 - val_loss: 2.4326\n",
      "Epoch 39/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3838 - val_loss: 2.3662\n",
      "Epoch 40/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3232 - val_loss: 2.3354\n",
      "Epoch 41/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3284 - val_loss: 2.3060\n",
      "Epoch 42/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.2972 - val_loss: 2.3030\n",
      "Epoch 43/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3795 - val_loss: 2.2788\n",
      "Epoch 44/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3426 - val_loss: 2.4253\n",
      "Epoch 45/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3658 - val_loss: 2.3137\n",
      "Epoch 46/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3441 - val_loss: 2.3908\n",
      "Epoch 47/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3660 - val_loss: 2.3661\n",
      "Epoch 48/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3679 - val_loss: 2.4015\n",
      "Epoch 49/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3980 - val_loss: 2.2734\n",
      "Epoch 50/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3172 - val_loss: 2.2789\n",
      "Epoch 51/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3712 - val_loss: 2.4158\n",
      "Epoch 52/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3482 - val_loss: 2.4234\n",
      "Epoch 53/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3460 - val_loss: 2.3237\n",
      "Epoch 54/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3464 - val_loss: 2.3347\n",
      "Epoch 55/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3212 - val_loss: 2.3744\n",
      "Epoch 56/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.4494 - val_loss: 2.4416\n",
      "Epoch 57/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3685 - val_loss: 2.3786\n",
      "Epoch 58/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3238 - val_loss: 2.3690\n",
      "Epoch 59/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3290 - val_loss: 2.3558\n",
      "Epoch 60/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.2945 - val_loss: 2.3152\n",
      "Epoch 61/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3685 - val_loss: 2.3844\n",
      "Epoch 62/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3706 - val_loss: 2.3879\n",
      "Epoch 63/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3617 - val_loss: 2.3169\n",
      "Epoch 64/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3492 - val_loss: 2.3538\n",
      "Epoch 65/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3171 - val_loss: 2.3248\n",
      "Epoch 66/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3519 - val_loss: 2.3258\n",
      "Epoch 67/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3455 - val_loss: 2.4234\n",
      "Epoch 68/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3749 - val_loss: 2.3730\n",
      "Epoch 69/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3214 - val_loss: 2.3482\n",
      "Epoch 70/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3555 - val_loss: 2.3381\n",
      "Epoch 71/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3340 - val_loss: 2.3827\n",
      "Epoch 72/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3381 - val_loss: 2.3250\n",
      "Epoch 73/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.2971 - val_loss: 2.3090\n",
      "Epoch 74/100\n",
      "28/28 [==============================] - 0s 4ms/step - loss: 2.3481 - val_loss: 2.3699\n",
      "Epoch 75/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3503 - val_loss: 2.2994\n",
      "Epoch 76/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3147 - val_loss: 2.4079\n",
      "Epoch 77/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.4143 - val_loss: 2.4446\n",
      "Epoch 78/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3824 - val_loss: 2.3323\n",
      "Epoch 79/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3369 - val_loss: 2.3382\n",
      "Epoch 80/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3366 - val_loss: 2.3542\n",
      "Epoch 81/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3614 - val_loss: 2.3811\n",
      "Epoch 82/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3423 - val_loss: 2.3483\n",
      "Epoch 83/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.4029 - val_loss: 2.3844\n",
      "Epoch 84/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3726 - val_loss: 2.3316\n",
      "Epoch 85/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.2985 - val_loss: 2.2900\n",
      "Epoch 86/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3137 - val_loss: 2.2679\n",
      "Epoch 87/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3316 - val_loss: 2.3294\n",
      "Epoch 88/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3564 - val_loss: 2.2853\n",
      "Epoch 89/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3279 - val_loss: 2.2747\n",
      "Epoch 90/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3132 - val_loss: 2.3006\n",
      "Epoch 91/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3021 - val_loss: 2.3415\n",
      "Epoch 92/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3285 - val_loss: 2.2832\n",
      "Epoch 93/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3216 - val_loss: 2.2953\n",
      "Epoch 94/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.2975 - val_loss: 2.3521\n",
      "Epoch 95/100\n",
      "28/28 [==============================] - 0s 3ms/step - loss: 2.3378 - val_loss: 2.3166\n",
      "Epoch 96/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3435 - val_loss: 2.3407\n",
      "Epoch 97/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3489 - val_loss: 2.4008\n",
      "Epoch 98/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3463 - val_loss: 2.4423\n",
      "Epoch 99/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3215 - val_loss: 2.2958\n",
      "Epoch 100/100\n",
      "28/28 [==============================] - 0s 2ms/step - loss: 2.3137 - val_loss: 2.4183\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<keras.callbacks.History at 0x215c3397400>"
      ]
     },
     "execution_count": 50,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "alcohol_model.fit( x_train,y_train,epochs=100,validation_split=0.2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "ename": "AttributeError",
     "evalue": "Exception encountered when calling layer \"sequential_12\" (type Sequential).\n\n'tuple' object has no attribute 'rank'\n\nCall arguments received:\n  • inputs=      fixed acidity  volatile acidity  citric acid  residual sugar  chlorides  \\\n453            10.4              0.33         0.63            2.80      0.084   \n1415            6.2              0.58         0.00            1.60      0.065   \n1242            9.0              0.40         0.41            2.00      0.058   \n885             8.9              0.75         0.14            2.50      0.086   \n488            11.6              0.32         0.55            2.80      0.081   \n...             ...               ...          ...             ...        ...   \n34              5.2              0.32         0.25            1.80      0.103   \n1493            7.7              0.54         0.26            1.90      0.089   \n501            10.4              0.44         0.73            6.55      0.074   \n1464            6.8              0.59         0.10            1.70      0.063   \n911             9.1              0.28         0.46            9.00      0.114   \n\n      free sulfur dioxide  total sulfur dioxide  density    pH  sulphates  \\\n453                   5.0                  22.0  0.99980  3.26       0.74   \n1415                  8.0                  18.0  0.99660  3.56       0.84   \n1242                 15.0                  40.0  0.99414  3.22       0.60   \n885                   9.0                  30.0  0.99824  3.34       0.64   \n488                  35.0                  67.0  1.00020  3.32       0.92   \n...                   ...                   ...      ...   ...        ...   \n34                   13.0                  50.0  0.99570  3.38       0.55   \n1493                 23.0                 147.0  0.99636  3.26       0.59   \n501                  38.0                  76.0  0.99900  3.17       0.85   \n1464                 34.0                  53.0  0.99580  3.41       0.67   \n911                   3.0                   9.0  0.99901  3.18       0.60   \n\n      alcohol  \n453      11.2  \n1415      9.4  \n1242     12.2  \n885      10.5  \n488      10.8  \n...       ...  \n34        9.2  \n1493      9.7  \n501      12.0  \n1464      9.7  \n911      10.9  \n\n[480 rows x 11 columns]\n  • training=None\n  • mask=None",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
      "\u001b[1;32md:\\Rad\\SI\\TENSORFLOW\\zadaci\\2.ipynb Cell 12'\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> <a href='vscode-notebook-cell:/d%3A/Rad/SI/TENSORFLOW/zadaci/2.ipynb#ch0000013?line=0'>1</a>\u001b[0m y_pred\u001b[39m=\u001b[39malcohol_model(x_test)\n",
      "File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\keras\\utils\\traceback_utils.py:67\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m     <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/utils/traceback_utils.py?line=64'>65</a>\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:  \u001b[39m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m     <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/utils/traceback_utils.py?line=65'>66</a>\u001b[0m   filtered_tb \u001b[39m=\u001b[39m _process_traceback_frames(e\u001b[39m.\u001b[39m__traceback__)\n\u001b[1;32m---> <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/utils/traceback_utils.py?line=66'>67</a>\u001b[0m   \u001b[39mraise\u001b[39;00m e\u001b[39m.\u001b[39mwith_traceback(filtered_tb) \u001b[39mfrom\u001b[39;00m \u001b[39mNone\u001b[39m\n\u001b[0;32m     <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/utils/traceback_utils.py?line=67'>68</a>\u001b[0m \u001b[39mfinally\u001b[39;00m:\n\u001b[0;32m     <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/utils/traceback_utils.py?line=68'>69</a>\u001b[0m   \u001b[39mdel\u001b[39;00m filtered_tb\n",
      "File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\keras\\engine\\input_spec.py:226\u001b[0m, in \u001b[0;36massert_input_compatibility\u001b[1;34m(input_spec, inputs, layer_name)\u001b[0m\n\u001b[0;32m    <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=220'>221</a>\u001b[0m     \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mInput \u001b[39m\u001b[39m{\u001b[39;00minput_index\u001b[39m}\u001b[39;00m\u001b[39m of layer \u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00mlayer_name\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m\u001b[39m \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m    <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=221'>222</a>\u001b[0m                      \u001b[39m'\u001b[39m\u001b[39mis incompatible with the layer: \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m    <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=222'>223</a>\u001b[0m                      \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mexpected max_ndim=\u001b[39m\u001b[39m{\u001b[39;00mspec\u001b[39m.\u001b[39mmax_ndim\u001b[39m}\u001b[39;00m\u001b[39m, \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m    <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=223'>224</a>\u001b[0m                      \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mfound ndim=\u001b[39m\u001b[39m{\u001b[39;00mndim\u001b[39m}\u001b[39;00m\u001b[39m'\u001b[39m)\n\u001b[0;32m    <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=224'>225</a>\u001b[0m \u001b[39mif\u001b[39;00m spec\u001b[39m.\u001b[39mmin_ndim \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m--> <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=225'>226</a>\u001b[0m   ndim \u001b[39m=\u001b[39m x\u001b[39m.\u001b[39;49mshape\u001b[39m.\u001b[39;49mrank\n\u001b[0;32m    <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=226'>227</a>\u001b[0m   \u001b[39mif\u001b[39;00m ndim \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m ndim \u001b[39m<\u001b[39m spec\u001b[39m.\u001b[39mmin_ndim:\n\u001b[0;32m    <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=227'>228</a>\u001b[0m     \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mInput \u001b[39m\u001b[39m{\u001b[39;00minput_index\u001b[39m}\u001b[39;00m\u001b[39m of layer \u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00mlayer_name\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m\u001b[39m \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m    <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=228'>229</a>\u001b[0m                      \u001b[39m'\u001b[39m\u001b[39mis incompatible with the layer: \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m    <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=229'>230</a>\u001b[0m                      \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mexpected min_ndim=\u001b[39m\u001b[39m{\u001b[39;00mspec\u001b[39m.\u001b[39mmin_ndim\u001b[39m}\u001b[39;00m\u001b[39m, \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m    <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=230'>231</a>\u001b[0m                      \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mfound ndim=\u001b[39m\u001b[39m{\u001b[39;00mndim\u001b[39m}\u001b[39;00m\u001b[39m. \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m    <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=231'>232</a>\u001b[0m                      \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mFull shape received: \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mtuple\u001b[39m(shape)\u001b[39m}\u001b[39;00m\u001b[39m'\u001b[39m)\n",
      "\u001b[1;31mAttributeError\u001b[0m: Exception encountered when calling layer \"sequential_12\" (type Sequential).\n\n'tuple' object has no attribute 'rank'\n\nCall arguments received:\n  • inputs=      fixed acidity  volatile acidity  citric acid  residual sugar  chlorides  \\\n453            10.4              0.33         0.63            2.80      0.084   \n1415            6.2              0.58         0.00            1.60      0.065   \n1242            9.0              0.40         0.41            2.00      0.058   \n885             8.9              0.75         0.14            2.50      0.086   \n488            11.6              0.32         0.55            2.80      0.081   \n...             ...               ...          ...             ...        ...   \n34              5.2              0.32         0.25            1.80      0.103   \n1493            7.7              0.54         0.26            1.90      0.089   \n501            10.4              0.44         0.73            6.55      0.074   \n1464            6.8              0.59         0.10            1.70      0.063   \n911             9.1              0.28         0.46            9.00      0.114   \n\n      free sulfur dioxide  total sulfur dioxide  density    pH  sulphates  \\\n453                   5.0                  22.0  0.99980  3.26       0.74   \n1415                  8.0                  18.0  0.99660  3.56       0.84   \n1242                 15.0                  40.0  0.99414  3.22       0.60   \n885                   9.0                  30.0  0.99824  3.34       0.64   \n488                  35.0                  67.0  1.00020  3.32       0.92   \n...                   ...                   ...      ...   ...        ...   \n34                   13.0                  50.0  0.99570  3.38       0.55   \n1493                 23.0                 147.0  0.99636  3.26       0.59   \n501                  38.0                  76.0  0.99900  3.17       0.85   \n1464                 34.0                  53.0  0.99580  3.41       0.67   \n911                   3.0                   9.0  0.99901  3.18       0.60   \n\n      alcohol  \n453      11.2  \n1415      9.4  \n1242     12.2  \n885      10.5  \n488      10.8  \n...       ...  \n34        9.2  \n1493      9.7  \n501      12.0  \n1464      9.7  \n911      10.9  \n\n[480 rows x 11 columns]\n  • training=None\n  • mask=None"
     ]
    }
   ],
   "source": [
    "alcohol_model.evaluate(x_test, y_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tok=pd.DataFrame(progres.progres)\n",
    "tok['epoch']=progres.epoch\n",
    "print(tok)"
   ]
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "a93f175750059abc13a87c3bf357a09033a91b4f6c1a54ccd901c5d335f83c0c"
  },
  "kernelspec": {
   "display_name": "Python 3.10.2 64-bit",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.2"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}