1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
|
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from matplotlib.pyplot import axis\n",
"import pandas as pd\n",
"import tensorflow as tf\n",
"import numpy as np\n",
"import seaborn as sb\n",
"import keras as k\n",
"from sklearn.model_selection import train_test_split \n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"data=pd.read_csv('winequality.csv')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"fixed acidity False\n",
"volatile acidity False\n",
"citric acid False\n",
"residual sugar False\n",
"chlorides False\n",
"free sulfur dioxide False\n",
"total sulfur dioxide False\n",
"density False\n",
"pH False\n",
"sulphates False\n",
"alcohol False\n",
"quality False\n",
"dtype: bool\n"
]
}
],
"source": [
"print(data.isnull().any())"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 1599 entries, 0 to 1598\n",
"Data columns (total 12 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 fixed acidity 1599 non-null float64\n",
" 1 volatile acidity 1599 non-null float64\n",
" 2 citric acid 1599 non-null float64\n",
" 3 residual sugar 1599 non-null float64\n",
" 4 chlorides 1599 non-null float64\n",
" 5 free sulfur dioxide 1599 non-null float64\n",
" 6 total sulfur dioxide 1599 non-null float64\n",
" 7 density 1599 non-null float64\n",
" 8 pH 1599 non-null float64\n",
" 9 sulphates 1599 non-null float64\n",
" 10 alcohol 1599 non-null float64\n",
" 11 quality 1599 non-null int64 \n",
"dtypes: float64(11), int64(1)\n",
"memory usage: 150.0 KB\n",
"None\n"
]
}
],
"source": [
"print(data.info())"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 5\n",
"1 5\n",
"2 5\n",
"3 6\n",
"4 5\n",
"5 5\n",
"6 5\n",
"7 7\n",
"8 7\n",
"9 5\n",
"Name: quality, dtype: int64\n",
" fixed acidity volatile acidity citric acid residual sugar chlorides \\\n",
"0 7.4 0.70 0.00 1.9 0.076 \n",
"1 7.8 0.88 0.00 2.6 0.098 \n",
"2 7.8 0.76 0.04 2.3 0.092 \n",
"3 11.2 0.28 0.56 1.9 0.075 \n",
"4 7.4 0.70 0.00 1.9 0.076 \n",
"5 7.4 0.66 0.00 1.8 0.075 \n",
"6 7.9 0.60 0.06 1.6 0.069 \n",
"7 7.3 0.65 0.00 1.2 0.065 \n",
"8 7.8 0.58 0.02 2.0 0.073 \n",
"9 7.5 0.50 0.36 6.1 0.071 \n",
"\n",
" free sulfur dioxide total sulfur dioxide density pH sulphates \\\n",
"0 11.0 34.0 0.9978 3.51 0.56 \n",
"1 25.0 67.0 0.9968 3.20 0.68 \n",
"2 15.0 54.0 0.9970 3.26 0.65 \n",
"3 17.0 60.0 0.9980 3.16 0.58 \n",
"4 11.0 34.0 0.9978 3.51 0.56 \n",
"5 13.0 40.0 0.9978 3.51 0.56 \n",
"6 15.0 59.0 0.9964 3.30 0.46 \n",
"7 15.0 21.0 0.9946 3.39 0.47 \n",
"8 9.0 18.0 0.9968 3.36 0.57 \n",
"9 17.0 102.0 0.9978 3.35 0.80 \n",
"\n",
" alcohol \n",
"0 9.4 \n",
"1 9.8 \n",
"2 9.8 \n",
"3 9.8 \n",
"4 9.4 \n",
"5 9.4 \n",
"6 9.4 \n",
"7 10.0 \n",
"8 9.5 \n",
"9 10.5 \n"
]
}
],
"source": [
"y=data.pop('quality')\n",
"x=data\n",
"\n",
"x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.7,random_state=50)\n",
"\n",
"print(y.head(10))\n",
"print(x.head(10))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"normalizer=tf.keras.layers.Normalization(axis=-1)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"normalizer.adapt(np.array(x_train))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"alcohol=np.array(x_train['alcohol'])\n",
"alcohol_normalizer=tf.keras.layers.Normalization(input_shape=[1,],axis=None)\n",
"alcohol_normalizer=alcohol_normalizer.adapt(alcohol)"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"alcohol_model = tf.keras.models.Sequential()\n",
"alcohol_model.add(tf.keras.layers.Dense(input_dim=11, units=100, activation='relu'))\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"alcohol_model.compile(\n",
" optimizer=tf.optimizers.Adam(learning_rate=0.1),\n",
" loss='mean_absolute_error'\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/100\n",
"28/28 [==============================] - 0s 5ms/step - loss: 3.2390 - val_loss: 2.5426\n",
"Epoch 2/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.4418 - val_loss: 2.3977\n",
"Epoch 3/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3838 - val_loss: 2.3266\n",
"Epoch 4/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3546 - val_loss: 2.3361\n",
"Epoch 5/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3218 - val_loss: 2.2931\n",
"Epoch 6/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3508 - val_loss: 2.2979\n",
"Epoch 7/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3198 - val_loss: 2.3019\n",
"Epoch 8/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3683 - val_loss: 2.3992\n",
"Epoch 9/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3907 - val_loss: 2.4212\n",
"Epoch 10/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3593 - val_loss: 2.3958\n",
"Epoch 11/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3772 - val_loss: 2.3542\n",
"Epoch 12/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3353 - val_loss: 2.3437\n",
"Epoch 13/100\n",
"28/28 [==============================] - 0s 4ms/step - loss: 2.3947 - val_loss: 2.3969\n",
"Epoch 14/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3660 - val_loss: 2.3823\n",
"Epoch 15/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3374 - val_loss: 2.3699\n",
"Epoch 16/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3862 - val_loss: 2.3677\n",
"Epoch 17/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3393 - val_loss: 2.2889\n",
"Epoch 18/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3500 - val_loss: 2.4911\n",
"Epoch 19/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3905 - val_loss: 2.3490\n",
"Epoch 20/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3631 - val_loss: 2.3380\n",
"Epoch 21/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3155 - val_loss: 2.5694\n",
"Epoch 22/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.4091 - val_loss: 2.2998\n",
"Epoch 23/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3569 - val_loss: 2.3790\n",
"Epoch 24/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3409 - val_loss: 2.3120\n",
"Epoch 25/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3285 - val_loss: 2.3552\n",
"Epoch 26/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3403 - val_loss: 2.3427\n",
"Epoch 27/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3078 - val_loss: 2.3340\n",
"Epoch 28/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3293 - val_loss: 2.4440\n",
"Epoch 29/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3468 - val_loss: 2.2857\n",
"Epoch 30/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3323 - val_loss: 2.3261\n",
"Epoch 31/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3532 - val_loss: 2.3838\n",
"Epoch 32/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3031 - val_loss: 2.3436\n",
"Epoch 33/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3755 - val_loss: 2.3305\n",
"Epoch 34/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.4398 - val_loss: 2.3591\n",
"Epoch 35/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3882 - val_loss: 2.3554\n",
"Epoch 36/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3765 - val_loss: 2.5028\n",
"Epoch 37/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3764 - val_loss: 2.2674\n",
"Epoch 38/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.4234 - val_loss: 2.4326\n",
"Epoch 39/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3838 - val_loss: 2.3662\n",
"Epoch 40/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3232 - val_loss: 2.3354\n",
"Epoch 41/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3284 - val_loss: 2.3060\n",
"Epoch 42/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.2972 - val_loss: 2.3030\n",
"Epoch 43/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3795 - val_loss: 2.2788\n",
"Epoch 44/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3426 - val_loss: 2.4253\n",
"Epoch 45/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3658 - val_loss: 2.3137\n",
"Epoch 46/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3441 - val_loss: 2.3908\n",
"Epoch 47/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3660 - val_loss: 2.3661\n",
"Epoch 48/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3679 - val_loss: 2.4015\n",
"Epoch 49/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3980 - val_loss: 2.2734\n",
"Epoch 50/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3172 - val_loss: 2.2789\n",
"Epoch 51/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3712 - val_loss: 2.4158\n",
"Epoch 52/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3482 - val_loss: 2.4234\n",
"Epoch 53/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3460 - val_loss: 2.3237\n",
"Epoch 54/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3464 - val_loss: 2.3347\n",
"Epoch 55/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3212 - val_loss: 2.3744\n",
"Epoch 56/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.4494 - val_loss: 2.4416\n",
"Epoch 57/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3685 - val_loss: 2.3786\n",
"Epoch 58/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3238 - val_loss: 2.3690\n",
"Epoch 59/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3290 - val_loss: 2.3558\n",
"Epoch 60/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.2945 - val_loss: 2.3152\n",
"Epoch 61/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3685 - val_loss: 2.3844\n",
"Epoch 62/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3706 - val_loss: 2.3879\n",
"Epoch 63/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3617 - val_loss: 2.3169\n",
"Epoch 64/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3492 - val_loss: 2.3538\n",
"Epoch 65/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3171 - val_loss: 2.3248\n",
"Epoch 66/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3519 - val_loss: 2.3258\n",
"Epoch 67/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3455 - val_loss: 2.4234\n",
"Epoch 68/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3749 - val_loss: 2.3730\n",
"Epoch 69/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3214 - val_loss: 2.3482\n",
"Epoch 70/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3555 - val_loss: 2.3381\n",
"Epoch 71/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3340 - val_loss: 2.3827\n",
"Epoch 72/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3381 - val_loss: 2.3250\n",
"Epoch 73/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.2971 - val_loss: 2.3090\n",
"Epoch 74/100\n",
"28/28 [==============================] - 0s 4ms/step - loss: 2.3481 - val_loss: 2.3699\n",
"Epoch 75/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3503 - val_loss: 2.2994\n",
"Epoch 76/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3147 - val_loss: 2.4079\n",
"Epoch 77/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.4143 - val_loss: 2.4446\n",
"Epoch 78/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3824 - val_loss: 2.3323\n",
"Epoch 79/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3369 - val_loss: 2.3382\n",
"Epoch 80/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3366 - val_loss: 2.3542\n",
"Epoch 81/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3614 - val_loss: 2.3811\n",
"Epoch 82/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3423 - val_loss: 2.3483\n",
"Epoch 83/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.4029 - val_loss: 2.3844\n",
"Epoch 84/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3726 - val_loss: 2.3316\n",
"Epoch 85/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.2985 - val_loss: 2.2900\n",
"Epoch 86/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3137 - val_loss: 2.2679\n",
"Epoch 87/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3316 - val_loss: 2.3294\n",
"Epoch 88/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3564 - val_loss: 2.2853\n",
"Epoch 89/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3279 - val_loss: 2.2747\n",
"Epoch 90/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3132 - val_loss: 2.3006\n",
"Epoch 91/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3021 - val_loss: 2.3415\n",
"Epoch 92/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3285 - val_loss: 2.2832\n",
"Epoch 93/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3216 - val_loss: 2.2953\n",
"Epoch 94/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.2975 - val_loss: 2.3521\n",
"Epoch 95/100\n",
"28/28 [==============================] - 0s 3ms/step - loss: 2.3378 - val_loss: 2.3166\n",
"Epoch 96/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3435 - val_loss: 2.3407\n",
"Epoch 97/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3489 - val_loss: 2.4008\n",
"Epoch 98/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3463 - val_loss: 2.4423\n",
"Epoch 99/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3215 - val_loss: 2.2958\n",
"Epoch 100/100\n",
"28/28 [==============================] - 0s 2ms/step - loss: 2.3137 - val_loss: 2.4183\n"
]
},
{
"data": {
"text/plain": [
"<keras.callbacks.History at 0x215c3397400>"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"alcohol_model.fit( x_train,y_train,epochs=100,validation_split=0.2)"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "Exception encountered when calling layer \"sequential_12\" (type Sequential).\n\n'tuple' object has no attribute 'rank'\n\nCall arguments received:\n • inputs= fixed acidity volatile acidity citric acid residual sugar chlorides \\\n453 10.4 0.33 0.63 2.80 0.084 \n1415 6.2 0.58 0.00 1.60 0.065 \n1242 9.0 0.40 0.41 2.00 0.058 \n885 8.9 0.75 0.14 2.50 0.086 \n488 11.6 0.32 0.55 2.80 0.081 \n... ... ... ... ... ... \n34 5.2 0.32 0.25 1.80 0.103 \n1493 7.7 0.54 0.26 1.90 0.089 \n501 10.4 0.44 0.73 6.55 0.074 \n1464 6.8 0.59 0.10 1.70 0.063 \n911 9.1 0.28 0.46 9.00 0.114 \n\n free sulfur dioxide total sulfur dioxide density pH sulphates \\\n453 5.0 22.0 0.99980 3.26 0.74 \n1415 8.0 18.0 0.99660 3.56 0.84 \n1242 15.0 40.0 0.99414 3.22 0.60 \n885 9.0 30.0 0.99824 3.34 0.64 \n488 35.0 67.0 1.00020 3.32 0.92 \n... ... ... ... ... ... \n34 13.0 50.0 0.99570 3.38 0.55 \n1493 23.0 147.0 0.99636 3.26 0.59 \n501 38.0 76.0 0.99900 3.17 0.85 \n1464 34.0 53.0 0.99580 3.41 0.67 \n911 3.0 9.0 0.99901 3.18 0.60 \n\n alcohol \n453 11.2 \n1415 9.4 \n1242 12.2 \n885 10.5 \n488 10.8 \n... ... \n34 9.2 \n1493 9.7 \n501 12.0 \n1464 9.7 \n911 10.9 \n\n[480 rows x 11 columns]\n • training=None\n • mask=None",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32md:\\Rad\\SI\\TENSORFLOW\\zadaci\\2.ipynb Cell 12'\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> <a href='vscode-notebook-cell:/d%3A/Rad/SI/TENSORFLOW/zadaci/2.ipynb#ch0000013?line=0'>1</a>\u001b[0m y_pred\u001b[39m=\u001b[39malcohol_model(x_test)\n",
"File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\keras\\utils\\traceback_utils.py:67\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/utils/traceback_utils.py?line=64'>65</a>\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e: \u001b[39m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/utils/traceback_utils.py?line=65'>66</a>\u001b[0m filtered_tb \u001b[39m=\u001b[39m _process_traceback_frames(e\u001b[39m.\u001b[39m__traceback__)\n\u001b[1;32m---> <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/utils/traceback_utils.py?line=66'>67</a>\u001b[0m \u001b[39mraise\u001b[39;00m e\u001b[39m.\u001b[39mwith_traceback(filtered_tb) \u001b[39mfrom\u001b[39;00m \u001b[39mNone\u001b[39m\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/utils/traceback_utils.py?line=67'>68</a>\u001b[0m \u001b[39mfinally\u001b[39;00m:\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/utils/traceback_utils.py?line=68'>69</a>\u001b[0m \u001b[39mdel\u001b[39;00m filtered_tb\n",
"File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python310\\lib\\site-packages\\keras\\engine\\input_spec.py:226\u001b[0m, in \u001b[0;36massert_input_compatibility\u001b[1;34m(input_spec, inputs, layer_name)\u001b[0m\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=220'>221</a>\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mInput \u001b[39m\u001b[39m{\u001b[39;00minput_index\u001b[39m}\u001b[39;00m\u001b[39m of layer \u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00mlayer_name\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m\u001b[39m \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=221'>222</a>\u001b[0m \u001b[39m'\u001b[39m\u001b[39mis incompatible with the layer: \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=222'>223</a>\u001b[0m \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mexpected max_ndim=\u001b[39m\u001b[39m{\u001b[39;00mspec\u001b[39m.\u001b[39mmax_ndim\u001b[39m}\u001b[39;00m\u001b[39m, \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=223'>224</a>\u001b[0m \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mfound ndim=\u001b[39m\u001b[39m{\u001b[39;00mndim\u001b[39m}\u001b[39;00m\u001b[39m'\u001b[39m)\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=224'>225</a>\u001b[0m \u001b[39mif\u001b[39;00m spec\u001b[39m.\u001b[39mmin_ndim \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m--> <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=225'>226</a>\u001b[0m ndim \u001b[39m=\u001b[39m x\u001b[39m.\u001b[39;49mshape\u001b[39m.\u001b[39;49mrank\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=226'>227</a>\u001b[0m \u001b[39mif\u001b[39;00m ndim \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m ndim \u001b[39m<\u001b[39m spec\u001b[39m.\u001b[39mmin_ndim:\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=227'>228</a>\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mInput \u001b[39m\u001b[39m{\u001b[39;00minput_index\u001b[39m}\u001b[39;00m\u001b[39m of layer \u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00mlayer_name\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m\u001b[39m \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=228'>229</a>\u001b[0m \u001b[39m'\u001b[39m\u001b[39mis incompatible with the layer: \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=229'>230</a>\u001b[0m \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mexpected min_ndim=\u001b[39m\u001b[39m{\u001b[39;00mspec\u001b[39m.\u001b[39mmin_ndim\u001b[39m}\u001b[39;00m\u001b[39m, \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=230'>231</a>\u001b[0m \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mfound ndim=\u001b[39m\u001b[39m{\u001b[39;00mndim\u001b[39m}\u001b[39;00m\u001b[39m. \u001b[39m\u001b[39m'\u001b[39m\n\u001b[0;32m <a href='file:///c%3A/Users/TAMARA/AppData/Local/Programs/Python/Python310/lib/site-packages/keras/engine/input_spec.py?line=231'>232</a>\u001b[0m \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mFull shape received: \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mtuple\u001b[39m(shape)\u001b[39m}\u001b[39;00m\u001b[39m'\u001b[39m)\n",
"\u001b[1;31mAttributeError\u001b[0m: Exception encountered when calling layer \"sequential_12\" (type Sequential).\n\n'tuple' object has no attribute 'rank'\n\nCall arguments received:\n • inputs= fixed acidity volatile acidity citric acid residual sugar chlorides \\\n453 10.4 0.33 0.63 2.80 0.084 \n1415 6.2 0.58 0.00 1.60 0.065 \n1242 9.0 0.40 0.41 2.00 0.058 \n885 8.9 0.75 0.14 2.50 0.086 \n488 11.6 0.32 0.55 2.80 0.081 \n... ... ... ... ... ... \n34 5.2 0.32 0.25 1.80 0.103 \n1493 7.7 0.54 0.26 1.90 0.089 \n501 10.4 0.44 0.73 6.55 0.074 \n1464 6.8 0.59 0.10 1.70 0.063 \n911 9.1 0.28 0.46 9.00 0.114 \n\n free sulfur dioxide total sulfur dioxide density pH sulphates \\\n453 5.0 22.0 0.99980 3.26 0.74 \n1415 8.0 18.0 0.99660 3.56 0.84 \n1242 15.0 40.0 0.99414 3.22 0.60 \n885 9.0 30.0 0.99824 3.34 0.64 \n488 35.0 67.0 1.00020 3.32 0.92 \n... ... ... ... ... ... \n34 13.0 50.0 0.99570 3.38 0.55 \n1493 23.0 147.0 0.99636 3.26 0.59 \n501 38.0 76.0 0.99900 3.17 0.85 \n1464 34.0 53.0 0.99580 3.41 0.67 \n911 3.0 9.0 0.99901 3.18 0.60 \n\n alcohol \n453 11.2 \n1415 9.4 \n1242 12.2 \n885 10.5 \n488 10.8 \n... ... \n34 9.2 \n1493 9.7 \n501 12.0 \n1464 9.7 \n911 10.9 \n\n[480 rows x 11 columns]\n • training=None\n • mask=None"
]
}
],
"source": [
"alcohol_model.evaluate(x_test, y_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tok=pd.DataFrame(progres.progres)\n",
"tok['epoch']=progres.epoch\n",
"print(tok)"
]
}
],
"metadata": {
"interpreter": {
"hash": "a93f175750059abc13a87c3bf357a09033a91b4f6c1a54ccd901c5d335f83c0c"
},
"kernelspec": {
"display_name": "Python 3.10.2 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.2"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|