1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
import { NgIf } from "@angular/common";
export default class Model {
_id: string = '';
constructor(
public name: string = 'Novi model',
public description: string = '',
public dateCreated: Date = new Date(),
public lastUpdated: Date = new Date(),
//public experimentId: string = '',
// Neural net training settings
public type: ProblemType = ProblemType.Regression,
public optimizer: Optimizer = Optimizer.Adam,
public lossFunction: LossFunction = LossFunction.MeanSquaredError,
public inputNeurons: number = 1,
public hiddenLayerNeurons: number = 1,
public hiddenLayers: number = 1,
public batchSize: number = 5,
public hiddenLayerActivationFunctions: string[] = ['sigmoid'],
public outputLayerActivationFunction: ActivationFunction = ActivationFunction.Sigmoid,
public uploaderId: string = '',
public metrics: string[] = [], // TODO add to add-model form
public epochs: number = 5 // TODO add to add-model form
) { }
}
export enum ProblemType {
Regression = 'regresioni',
BinaryClassification = 'binarni-klasifikacioni',
MultiClassification = 'multi-klasifikacioni'
}
// replaceMissing srednja vrednost mean, median, najcesca vrednost (mode)
// removeOutliers
export enum ActivationFunction {
// linear
Binary_Step = 'binaryStep',
// non-linear
Leaky_Relu = 'leakyRelu',
Parameterised_Relu = 'parameterisedRelu',
Exponential_Linear_Unit = 'exponentialLinearUnit',
Swish = 'swish',
//hiddenLayers
Relu = 'relu',
Sigmoid = 'sigmoid',
Tanh = 'tanh',
//outputLayer
Linear = 'linear',
//Sigmoid='sigmoid',
Softmax = 'softmax',
}
/*
export enum ActivationFunctionHiddenLayer
{
Relu='relu',
Sigmoid='sigmoid',
Tanh='tanh'
}
export enum ActivationFunctionOutputLayer
{
Linear = 'linear',
Sigmoid='sigmoid',
Softmax='softmax'
}
*/
export enum LossFunction {
// binary classification loss functions
BinaryCrossEntropy = 'binary_crossentropy',
SquaredHingeLoss = 'squared_hinge_loss',
HingeLoss = 'hinge_loss',
// multi-class classification loss functions
CategoricalCrossEntropy = 'categorical_crossentropy',
SparseCategoricalCrossEntropy = 'sparse_categorical_crossentropy',
KLDivergence = 'kullback_leibler_divergence',
// regression loss functions
MeanAbsoluteError = 'mean_absolute_error',
MeanSquaredError = 'mean_squared_error',
MeanSquaredLogarithmicError = 'mean_squared_logarithmic_error',
HuberLoss = 'Huber'
}
export enum LossFunctionRegression {
MeanAbsoluteError = 'mean_absolute_error',
MeanSquaredError = 'mean_squared_error',
MeanSquaredLogarithmicError = 'mean_squared_logarithmic_error',
}
export enum LossFunctionBinaryClassification {
BinaryCrossEntropy = 'binary_crossentropy',
SquaredHingeLoss = 'squared_hinge_loss',
HingeLoss = 'hinge_loss',
}
export enum LossFunctionMultiClassification {
CategoricalCrossEntropy = 'categorical_crossentropy',
SparseCategoricalCrossEntropy = 'sparse_categorical_crossentropy',
KLDivergence = 'kullback_leibler_divergence',
}
export enum Optimizer {
Adam = 'Adam',
Adadelta = 'Adadelta',
Adagrad = 'Adagrad',
Ftrl = 'Ftrl',
Nadam = 'Nadam',
SGD = 'SGD',
SGDMomentum = 'SGDMomentum',
RMSprop = 'RMSprop'
}
export enum NullValueOptions {
DeleteRows = 'delete_rows',
DeleteColumns = 'delete_columns',
Replace = 'replace'
}
export enum ReplaceWith {
None = 'Popuni...',
Mean = 'Srednja vrednost',
Median = 'Medijana'
}
export class NullValReplacer {
"column": string;
"option": NullValueOptions;
"value": string;
}
export enum Metrics {
MSE = 'mse',
MAE = 'mae',
RMSE = 'rmse'
}
export enum MetricsRegression {
Mse = 'mse',
Mae = 'mae',
Mape = 'mape',
Msle = 'msle',
CosineProximity = 'cosine'
}
export enum MetricsBinaryClassification {
Accuracy = 'binary_accuracy',
Auc = "AUC",
Precision = 'precision_score',
Recall = 'recall_score',
F1 = 'f1_score',
}
export enum MetricsMultiClassification {
Accuracy = 'categorical_accuracy',
Auc = "AUC",
Precision = 'precision_score',
Recall = 'recall_score',
F1 = 'f1_score',
}
|