aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api
diff options
context:
space:
mode:
authorTAMARA JERINIC <tamara.jerinic@gmail.com>2022-04-16 00:42:36 +0200
committerTAMARA JERINIC <tamara.jerinic@gmail.com>2022-04-16 00:42:36 +0200
commit73a539f449f2f6ec7bc7adaa18ebbe1b1b45ad9c (patch)
treedbff17f0f444b06f3da4a4a99d59682861b8d822 /backend/microservice/api
parent8733ac0770aab10231b59d0398acd33765936247 (diff)
Omogućeno prikupljanje rezultata metrika nakon završenog treniranja modela.
Diffstat (limited to 'backend/microservice/api')
-rw-r--r--backend/microservice/api/newmlservice.py19
1 files changed, 12 insertions, 7 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index d19a4e44..ecadb0f4 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -21,6 +21,7 @@ from sklearn.model_selection import train_test_split
from dataclasses import dataclass
import statistics as s
from sklearn.metrics import roc_auc_score
+
#from ann_visualizer.visualize import ann_viz;
def returnColumnsInfo(dataset):
dict=[]
@@ -224,7 +225,7 @@ def train(dataset, params, callback):
#
#
###OPTIMIZATORI
-
+ """
if(params['optimizer']=='adam'):
opt=tf.keras.optimizers.Adam(learning_rate=params['learningRate'])
@@ -276,7 +277,7 @@ def train(dataset, params, callback):
activityreg=tf.keras.regularizers.l2(reg['activityRate'])
elif(reg['kernelType']=='l1l2'):
activityreg=tf.keras.regularizers.l1_l2(l1=reg['activityRate'][0],l2=reg['activityRate'][1])
-
+ """
if(problem_type=='multi-klasifikacioni'):
#print('multi')
@@ -293,17 +294,19 @@ def train(dataset, params, callback):
classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics'])
history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize'])
-
+
+ hist=history.history
+
y_pred=classifier.predict(x_test)
y_pred=np.argmax(y_pred,axis=1)
- #print(y_pred.flatten())
- #print(y_test)
+
scores = classifier.evaluate(x_test, y_test)
#print("\n%s: %.2f%%" % (classifier.metrics_names[1], scores[1]*100))
classifier.save("temp/"+params['name'], save_format='h5')
#vizuelizacija u python-u
#from ann_visualizer.visualize import ann_viz;
#ann_viz(classifier, title="My neural network")
+ return hist
elif(problem_type=='binarni-klasifikacioni'):
#print('*************************************************************************binarni')
@@ -318,7 +321,7 @@ def train(dataset, params, callback):
classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics'])
history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize'])
-
+ hist=history.history
y_pred=classifier.predict(x_test)
y_pred=(y_pred>=0.5).astype('int')
@@ -330,6 +333,7 @@ def train(dataset, params, callback):
#ann_viz(classifier, title="My neural network")
classifier.save("temp/"+params['name'], save_format='h5')
+ return hist
elif(problem_type=='regresioni'):
classifier=tf.keras.Sequential()
@@ -343,9 +347,10 @@ def train(dataset, params, callback):
classifier.compile(loss =params["lossFunction"] , optimizer = params['optimizer'] , metrics =params['metrics'])
history=classifier.fit(x_train, y_train, epochs = params['epochs'],batch_size=params['batchSize'])
+ hist=history.history
y_pred=classifier.predict(x_test)
#print(classifier.evaluate(x_test, y_test))
-
+ return hist
def roc_auc_score_multiclass(actual_class, pred_class, average = "macro"):
#creating a set of all the unique classes using the actual class list