aboutsummaryrefslogtreecommitdiff
path: root/backend/microservice/api
diff options
context:
space:
mode:
authorIvan Ljubisavljevic <ivan996sk@gmail.com>2022-05-05 01:34:52 +0200
committerIvan Ljubisavljevic <ivan996sk@gmail.com>2022-05-05 01:34:52 +0200
commitbdabccc6e8f4d35085a4defe61c579ea0002f798 (patch)
tree3affc7cba96164a752ab82b284638eeca50a72a8 /backend/microservice/api
parentbd13fc85e30778e0ce84ca3f066196c3e08a2e13 (diff)
parent90dfdda35ce378808b3567b0addee603112ef756 (diff)
Merge branch 'redesign' of http://gitlab.pmf.kg.ac.rs/igrannonica/neuronstellar into redesign
Diffstat (limited to 'backend/microservice/api')
-rw-r--r--backend/microservice/api/newmlservice.py40
1 files changed, 18 insertions, 22 deletions
diff --git a/backend/microservice/api/newmlservice.py b/backend/microservice/api/newmlservice.py
index d84d9567..2f08d4b4 100644
--- a/backend/microservice/api/newmlservice.py
+++ b/backend/microservice/api/newmlservice.py
@@ -130,7 +130,7 @@ def returnColumnsInfo(dataset):
#print(NullRows)
#print(len(NullRows))
allNullRows=len(NullRows)
- print(cMatrix.to_json(orient='index'))
+ #print(cMatrix.to_json(orient='index'))
#json.loads()['data']
return {'columnInfo':dict,'allNullColl':int(allNullCols),'allNullRows':int(allNullRows),'rowCount':int(rowCount),'colCount':int(colCount),'cMatrix':json.loads(cMatrix.to_json(orient='split'))['data']}
@@ -180,17 +180,20 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
kategorijskekolone=[]
###PRETVARANJE NUMERICKIH U KATREGORIJSKE AKO JE KORISNIK TAKO OZNACIO
columnInfo=paramsDataset['columnInfo']
- for col in columnInfo:
- if(col['columnType']=="Kategorijski"):
+ columnTypes=paramsExperiment['columnTypes']
+ for i in range(len(columnInfo)):
+ col=columnInfo[i]
+ if(columnTypes[i]=="categorical" and col['columnName'] in paramsExperiment['inputColumns']):
data[col['columnName']]=data[col['columnName']].apply(str)
- kategorijskekolone.append(col['coumnName'])
-
+ kategorijskekolone.append(col['columnName'])
+ #kategorijskekolone=data.select_dtypes(include=['object']).columns
+ print(kategorijskekolone)
###NULL
null_value_options = paramsExperiment["nullValues"]
null_values_replacers = paramsExperiment["nullValuesReplacers"]
if(null_value_options=='replace'):
- #print("replace null") #
+ #print("replace null")
dict=null_values_replacers
while(len(dict)>0):
replace=dict.pop()
@@ -362,9 +365,9 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt, metrics =paramsModel['metrics'])
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt, metrics = ['accuracy','mae','mse'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
#plt.plot(hist['accuracy'])
@@ -416,16 +419,9 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.add(tf.keras.layers.Dense(units=1, activation=paramsModel['outputLayerActivationFunction']))#izlazni sloj
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics'])
-
- print('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')
- print(x_train)
- print('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')
- print(y_train)
- print('AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA')
-
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics = ['accuracy','mae','mse'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
y_pred=classifier.predict(x_test)
y_pred=(y_pred>=0.5).astype('int')
@@ -470,11 +466,11 @@ def train(dataset, paramsModel,paramsExperiment,paramsDataset,callback):
classifier.add(tf.keras.layers.Dense(units=paramsModel['layers'][i+1]['neurons'], activation=paramsModel['layers'][i+1]['activationFunction'],kernel_regularizer=kernelreg, bias_regularizer=biasreg, activity_regularizer=activityreg))#i-ti skriveni sloj
- classifier.add(tf.keras.layers.Dense(units=1),activation=paramsModel['outputLayerActivationFunction'])
+ classifier.add(tf.keras.layers.Dense(units=1,activation=paramsModel['outputLayerActivationFunction']))
- classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics =paramsModel['metrics'])
+ classifier.compile(loss =paramsModel["lossFunction"] , optimizer = opt , metrics = ['accuracy','mae','mse'])
- history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=float(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
+ history=classifier.fit(x_train, y_train, epochs = paramsModel['epochs'],batch_size=int(paramsModel['batchSize']),callbacks=callback(x_test, y_test,paramsModel['_id']))
hist=history.history
y_pred=classifier.predict(x_test)
#print(classifier.evaluate(x_test, y_test))
@@ -642,9 +638,9 @@ def manageH5(dataset,params,h5model):
h5model.summary()
#ann_viz(h5model, title="My neural network")
- h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics=params['metrics'])
+ h5model.compile(loss=params['lossFunction'], optimizer=params['optimizer'], metrics = ['accuracy','mae','mse'])
- history=h5model.fit(x2, y2, epochs = params['epochs'],batch_size=params['batchSize'])
+ history=h5model.fit(x2, y2, epochs = params['epochs'],batch_size=int(params['batchSize']))
y_pred2=h5model.predict(x2)